PHYSICAL REVIEW E 71, 056123(2005

One-dimensional Ising model built on small-world networks: Competing dynamics
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In this paper, we offer a competing dynamic analysis of the one-dimensional Ising model built on the
small-world network(SWN). Adding-type SWNs are investigated in detail using a simplified Hamiltonian of
mean-field nature, and the result of rewiring-type is given because of the similarities of these two typical
networks. We study the dynamical processes with competing Glauber mechanism and Kawasaki mechanism.
The Glauber-type single-spin transition mechanism with probalplgimulates the contact of the system with
a heat bath and the Kawasaki-type dynamics with probabilitp Bimulates an external energy flux. By
studying the phase diagram obtained in the present work, we can realize some dynamical properties influenced
by the small-world effect.
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Since Watts and Strogatz proposed the small-world netthese results. Although being conceptually straightforward, it
works (SWN) [1], which are believed to catch the essence ofis very cumbersome even for the simplest one-dimensional
many network systems in nature and society, a large numbesing model. It has been suggested that the spin system on
of further works have appearddee[2-5] for review. Re-  the SWN as a whole has mean-field-like effect on individual
searchers are interested in investigating the properties @fpins due to the long-range link8,7]. Naturally, a simplified
various models and processes on SWNs. Recently, Zhu anflethod of mean-field nature was presented by &hal.[7]

Zhu successfully introduced the SWN effect to the criticalto describe the kinetic spin system built on SWN. According
dynamics of the spin systefi7], and thus extended the in- to this simplified method, all possible networks are deemed
vestigation to the dynamic properties of spin models. In theas a single one. Then, the effective Hamiltonian of a spin-
1960s, the dynamic behavior of the Ising model was successattice model built on such a network is defined as the ex-
fully described with the Glaubef8] and Kawasaki[9] pected value over all possible realizations.

mechanisms. From then on, great progress has been achieved|n the present work we study two specific networks: In a
based on these two mechanisms. Besides, an interestirge-dimensional loop, for examplél) each randomly se-
problem has been attracting much attention, i.e., the compefected pair of vertices are additionally connected with prob-
ing Glauber-type and Kawasaki-type dynamjd®-12. In  ability p*; and(2) the vertices are visited one after another,
the competing mechanism, the Glauber-type dynamics iand its link in the clockwise sense is left in place with prob-
given probabilityp, while the Kawasaki-type one has prob- ability 1-pR and is reconnected to a randomly selected other
ability 1-p. Zhuet al’s recent work13] has studied small- node with probabilityp?. Networks of higher dimensions can
world network effect in the competing dynamics on thebe built similarly. We shall refer to the first model as adding-
Gaussian model. Some meaningful results has been obtainegipe small-world networK A-SWN) and the second one as
but due to the requirement of the convergence of the integraewiring-type network R-SWN).

tion, they were not able to get the full phase diagram. In this  We discuss the problem using the simplified method, and
paper, we investigate the competing dynamics of the Isingjive the effective Hamiltonian first. For the one-dimensional
model considering the small-world network effect, and we(1D) Ising model built on A-SWNs and R-SWNs, the effec-

obtain the full phase diagram and the competing dynamigive Hamiltonian can be written as, respectively,
behavior. By this work, we can further understand the influ-

ence of the SWN effect and highlight the disparities between A _ 1,

the dynamic mechanisms. AH (o) = K% Ok| k1 ¥ oP j%(aj : (@)
In the construction of SWN with a certain probability of

introducing long-range links, we will end up having a whole 1

set of possible realizations. Thus the theoretically correct _ gy/R =K 1- s R ,

way of treating dynamic systems built on SWN should in- ARy zk: o] (1=PYic N - 1p g{(a‘ '

volve three steps: First we have to make a full list of all the )
possible realizations and point out the probability of each
one of them. Second, we treat the problem independently oyhere 8=1/kgT andK=;J. The case oK >0, (J>0), cor-
each network. Finally, we give the expected value with allresponds to the ferromagnetic system.
Various dynamic processes in critical phenomena are be-
lieved to be governed by two basic mechanisms, i.e., the
*Corresponding author. Electronic address: zhujy@bnu.edu.cn Glauber-type with order parameter nonconserved and the
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Kawasaki-type with order parameter conserved. Their comwhere the expressions &(o;— o;) and W;(gjo;— 0j07)

bination, namely the competing dynamics, gives can be found in Ref.7] (but differently from that paper, we
q should switchg to - for W). Three important combined
=P{o},1) = pGre+ (1 = PKppe 3) terms in Egs.(6) and (7) are calculated, for the 1D Ising
dt model, to be

> W (g — &) = tani K (011 + 030) + K(N = 1)pa],

d
d—tqk(t>:pQE+<1—p)QE, qk(t):g oP{ohb). (4) &

This dynamic competition has also been receiving attention A 2 Ukm/l?,l&l(o'ko'ldl_’ O Oke1)

[12,13. Here, pGy, (or pQ?) denotes the Glauber-type Tkl

mechanism with probabilitp and (1-p)K,e [or (1-p)Qk oyt o 1

denotes the Kawasaki-type mechanism with probability 1 T +Z(‘Tk11_‘7'¢2_‘7k11‘7k0'¢1
—-p; they are determined, respectively, by the Glauber-type

single-spin transition probabilitw,(o;— ;) [14] and by the + 0011 012)tant(2K),
Kawasaki-type pair-spin redistribution probabili%y; (oo A o

— oj0)) [15]. > 2 aWL(owor — 6yar)

In their original form, the Glauber-type dynamics and the 07K o

Kawasaki-type dynamics both favor a lower energy state. 1 1

However, the competing dynamics is usually used to de- = E(N Do+ M) + > E(a'k_ a)taniK[oy(o-4
scribe a system in contact with a heat bath while exposed to 10k

an external energy flux. Naturally one requires a competition + 01— 01— o141 1}

between one process favoring lower system energy and the _ )
other one favoring higher system energy. Usually, the Now we turn to determine the system behavior by study-

Glauber-type mechanism is used to simulate the contact df9 the tendency of evolution of the following order param-

the system with a heat bath and it favors a lower energyte’s:

state. On the other hand the Kawasaki-type mechanism can 1 1

be modified to simulate an external energy flux that drives M(t) = NE a(t),M" (1) = NE (= D¥a(®). (8)

the system towards a higher energy state. This can be K k

achieved by switching to -3, or K=J=J/KgT to -K, and  Obviously, a state with both vanishirg(t) and M’(t) cor-
modifying the redistribution probability accordingly. This responds to the disordered paramagnetic phase; a state with
means that the competition between the Glauber-type mech@pnyanishingM(t) and vanishingw’(t) corresponds to the
nism and the Kawasaki-type mechanism is actually a comferromagnetic phase; and, in an antiferromagnetic phase we
petition between fgrromagngtlsm and anuferromagnetlsm,\,i” find vanishing M(t) and nonvanishingM’(t). If both
Probing the competing behavior of the 1D Ising on A-SWNS qer narameters are nonvanishing, this phase cannot be sim-
and R-SWNs is certainly a problem of interest. The equa'uorb|y identified as a ferromagnetic or paramagnetic phase, but

of evolution of the local magnetization is given by can be tentatively named as a heterophase.
d AR AR The cases of A-SWN will be discussed in detail in the
d_tqk(t) = pQE ’ +(1—p)Q{f . (5) following, and we will determine the tendency of system

evolution under a small perturbatidvi(t) — 0. We then give

The first and the second term correspond, respectively, to tH&€ results of the case of R-SWN. _
part of the Glauber's dynamics with probability and the For the 1D Ising model built on A-SWNs, the effective
part of the modified Kawasaki's dynami¢enly switching ~Hamiltonian of the system is given by E(l). From Egs.
K=4J to -K) with probability 1-p. Our calculation will ~(6)—(8) we can obtain

focus on A-SWN, while the result of R-SWN will be given
straightforwardly. M(t) = Mg exp) - p| (1 - tanh X)
For the Glauber-type dynamics
1
A " n — — Al 1 — =
QT =-q+> [E W (o — Ui)]P({U},t), (6) KIN-Lp (1 2tan|’? ZK)}}’ ©
{(T} a'i
and for the Kawasaki-type dynamics M’ () = M} exp{— {p(l +tanh X) + (1 - p)[z —tanh X
A
Q= - 2a(D- PPN - Dy(® L 1 L
. A n =(N-1 A(l——t hX-=t h«)} t}.
"‘E{ > [ > Uk\Nl?,k+w(0'kUk+w_’ UkUkm)] ¥ 2( P 2 an 4 an
{0} | w=%1 OOkt (10)
A ~ ~ ~
*p [% E FW (e — Uka')]}P({U}’t)’ D The tendency of evolution of the order parametdis) and
Ok, 0|
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M’(t) can be demonstrated by Eq®) and (10) when the 0 A-SWN: p*~1/N " R-SWN: p"=0.1
system undergoes a small perturbation. ' - ' " Ferro
(1) When p”=0, it means that no long-range link exists, emre g
0.8} % o8}
and % %‘,
tanh X % o6 < os}
M(t)=Mgexp - p{ 1 - o lt] (11 X =
tanh 2<C é 0al Parra g 04l Parra
g v‘-ﬁ
M’ (t) = M{ exp) — <1+tanh2K) i %
0 p tanh ZK(C) 0.2 §02
+(1—p)<2— tanh 2K> tt, (12) ®80 02 04 06 08 10 %0 02 04 06 08 10
tanhX? (a) 1-p (b) 1-p

where tanh KJ=1 corresponds to the critical point of the  FIG. 1. The phase diagrams of 1D Ising model built on SWN
one-dimensiona(1D) Ising model without the SWN effect with competing dynamics, Glauber-type with probability and
(K(C)—WO, TSIO). When K < Kg, (T>T(C):O), Egs.(11) and  Kawasaki-type with probabilitf1-p). (a) On the A-SWN struc-
(12) show thatM(t) and M’(t) are both approaching zero ture: pA~1/N; (b) On the R-SWN structurep®=0.1. In which,
exponentially due to the fact that tanK2 1, and thus we tanh K?%=1 corresponds to the critical point of the 1D Ising model
can reach the conclusion that, by whatever amount one irithout the SWN effectkg— =, T¢=0).

creases the energy flux, the system will stay in the paramag-

netic phase at arbitrary finite temperature. Whén-K?, 1
M’ (t) Eo, and ’ i © tanf2KE(L - pR]+ 2K5pR{1 - tankf[2Kg(1 - pR)]} =1,
t 1 (13
M(t) = Mgyexp —p- |, = ,
=M, p[ pJ TT I tani2K)ftanh(2K9)

and the time-evolution of the orders parametbt&) and
the critical slowing down of the order parametdit) will M’ (t)
appear at the critical poirC.
(2) Now a small portion of adding-type long links are _
introduced to the sygtem, the systerg k))/ghaviofJ in this case M(®) = Moexp{— p(l - tanff2K(1 - p9]
can be described by Eq) and (10). Obviously,M’(t) is
approaching zero exponentially at any temperature and any - 2KpR{1 _1 tanif[2K(1 - IOR)]})'[}, (14)
p?. From Egs(10) and(12), we can see clearly that the rate 2
of M’(t) approaching zero is faster than that in the regular
network. Different fromM’(t), the evolution tendency of the
order parameteM(t) depends on botiK and p*. We can M’(t) = Mg eXP[‘{p(lHanH[ZK(l—pR)])
obtained the critical point by the following equation:

tanh KA+ (N - 1)pAK§<1 - % tank? 2K§> =1 +(d- p)[(l = P2 - tanhi2K (L - )]}

. . 1 1
To give an example, if we suppog#=1/N, we can get +—pR{1——tanl[2K(1—pR)]
tanh K| ,a_1y=0.6809, or K| ,x_;=0.154. Relative to 2 2
KA, whent— o, M(t)—0 for K<KZ, M(t) #0 for K>K2, 1
andM(t) experiences critical slowing down fé¢— K2. So, -~ tanj4K(1 -pr)] (| (t|. (15)

combiningM(t) andM’(t) we can conclude thd®.a) for the . _ ) -
case ofK <K%, the system stays in the paramagnetic phase; (1) When no rewiring long link exists, i.ep™=0, the
(2.b) for the case oK — K2, the system shows the critical evolution is the same as the casepdf0.

slowing down:(2.0) for the case oK >K?, the system stays (2) When a small portion of rewiring-type long links is
in the ferromagnetic phase. ¢ introduced to the systenM’(t) is approaching zero expo-

However, wherp=0, we cannot identify the system sim- nentia!ly at any temperature and ap?. The decay rate of
ply as ferromagnetic or paramagnetic. Because in this case,f (1) is also faster then before. Different froM'(t), the
depends on the initial state. M, # 0, the system will stay in €volution tendency of the order parameké(t) depends on
ferromagnetic, otherwise the system will be paramagnetic. bothK and pR. The calculation of the critical point is similar

The phase diagram is shown in Figal to the A-SWN one. WhempR=0.1, we can get the critical

For the 1D Ising model built on R-SWNs, the effective Point,  tanH2K&(1-p%)];r0,1=0.90222, or KE|srogs
Hamiltonian of the system is given by E®). With analo-  =0.82446. Relative t&g, whent— oo, M(t)—0 for K<KE,
gous calculation, one can get the equation of the criticaM(t)# 0 for K>KE&, andM(t) shows critical slowing down
point K} for K— KE. CombiningM(t) andM’(t) we can conclude that
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(2.9 for the case oK< K?, the system stays in the paramag- As we have seen above, the Ising model shows critical
netic phase(2.b) for the case oK—>K§, the system shows phenomena on both A-SWNs and R-SWNs. This is because
the critical slowing down; and2.c) for the case oK>Kg,  random links introduce long-range interactions. It is reason-
the system stays in the ferromagnetic phase. The phase digple that the system will exhibit long-range order at finite
gram is shown in Fig. (0). _ _temperature. Furthermore, the more extra links, the higher
In this paper, we analytically study the dynamic propertiesy,q critical temperature. Thus on R-SWNs the Ising model

of the 1D Ising model built on small-world networks. Two has a maximum critical temperature for there is a maximum

typical SWNs are investigated, the adding type and rewirin o .
type. As is generally known, the 1D Ising model on the regu%humber of the random linkét is also expected that the sim-

lar lattice does not show continuous phase transition at anplified method with an effective Hamiltonian will fail when
nonzero temperature. However, if the SWN effect is intro-Most regular links are rewirgdHowever, long-range inter-
duced, critical phenomena appear in the 1D Ising modelactions do not lead to antiferromagnetic order at any compe-
With competing dynamics, as long as~ 0, the phase dia- tition probability, but instead, the-long range links make any
grams are separated into two regions. Below the critical temantiferromagnetic order decay faster. This is because the
perature, the system will get into the ferromagnetic phasepng-range interaction here is random, while antiferromagnet
while above the temperature, the system will get into theneeds ordered long interactions.

paramagnetic phase. The critical temperature is independent

of the competing probability. Different from the 2D Ising
model[10] and the Gaussian moddl3], the 1D Ising model
built on SWNs does not show antiferromagnetic phase at anthe
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National Basic Research Program of China

temperature and any competing probabifity
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